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Abstract

In this paper we investigate inference time scaling for
Denoising Diffusion Probabilistic Models (DDPMs) as
an alternative to training optimizations. We use various
guided generation techniques during inference by selec-
tively choosing noise samples, using two scoring meth-
ods including an MSE-based technique and a Mixture-
Based Approach with a few labeled MNIST samples.
Furthermore, we employ Top Half Search and Search
Over Paths algorithms. These, when used in combi-
nation with our scoring methods, allow us to steer the
backward diffusion process towards class-specific im-
ages. The experimental results indicate that our meth-
ods offer a significant enhancement over the uncondi-
tioned baseline model for generating class-specific im-
ages, with the classification accuracy of an MNIST clas-
sifier on generated images for specific classes being
71–77% with Search Over Paths and up to 85% with Top
Half Search. We also found that classification accuracy
and FID scores did not differ much with verifier size.
These findings indicate that inference time scaling can
serve as an effective alternative to training optimizations
by leveraging guided sampling techniques to improve
generation quality and class specificity without modi-
fying the underlying model parameters. In the future,
these algorithms should be extended to larger datasets
and metrics like inception score should be investigated.

1. Introduction

Previous research in generative AI has predomi-
nantly focused on enhancing models at training-time
through increasingly large datasets and model archi-
tectures. However, as training continues to scale for
large-scale generative models in both language and com-
puter vision, it is evident that focusing only on training-
time improvements brings diminishing returns with in-

creased computational costs [3]. Advancements in the
past year have demonstrated that inference-time compu-
tation presents a viable alternative for scaling, as evi-
denced by OpenAI’s o1 and o3 models and DeepSeek’s
R1 model in the language domain [2]. In this work,
we investigate this hypothesis in the computer vision
domain and specifically for Denoising Diffusion Prob-
abilistic Models (DDPMs), which are computationally
expensive and time-consuming to train.

As diffusion models continue to be applied across
a range of domains, including image generation, video
synthesis, and robotic motion planning, the efficient
scaling of inference is essential for improving their prac-
ticality and real-world deployment. In this study, we
utilize the MNIST dataset alongside a standard DDPM
architecture to investigate guided generation techniques
and search algorithms aimed at enhancing image gener-
ation quality. Through this approach, we introduce an
inference-time scaling framework incorporating a novel
scoring function, reducing reliance on computationally
expensive training while increasing generation quality.

2. Related Work

Inference time adjustments have been used for a long
time to improve the performance of diffusion models.
Initial approaches, such as time-step scaling, increased
the number of diffusion steps in DDPMs for better sam-
ple quality, while techniques like classifier guidance
[1] employed an external classifier to direct the denois-
ing. Afterwards, classifier free guidance was introduced,
which relied on the diffusion model itself [4]. However,
these approaches primarily focused on deterministic tra-
jectory steering rather than explicitly exploring the de-
noising trajectory space.

Recent research casts inference scaling as a search
problem. For example, Google DeepMind introduced
a verifier guided noise search framework that samples
multiple noises and selects the best from them, specifi-
cally designed for deterministic ODE solver-based diffu-
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sion models. [5]. Tang et al. proposed Direct Noise Op-
timization (DNO), which learns the optimal initial noise
from a reward function [6]. Other methods change noise
trajectories during the denoising process; for instance,
Yeh et al. proposed Sampling Demons, which gradu-
ally perturbs noise towards high reward regions [7], and
Yoon et al. employed Monte Carlo Tree Search (MCTS)
to perform online evaluation and pruning of denoising
trajectories [8].

Our approach takes a different direction. Instead of
relying on external verifiers or learned reward functions,
we score and prune noise candidates using a small set
of labeled training examples and their known forward
diffusion distributions. Our method operates entirely
within the standard DDPM framework, preserving its
inherent stochasticity while seeking to enhance sample
quality—unlike prior work which modifies determinis-
tic ODE solvers. By leveraging test-time conditioning
through noise pruning, we introduce an inference-time
denoising trajectory space search method that remains
faithful to the probabilistic diffusion process while im-
proving performance. A key distinction from Deep-
Mind’s approach is that our source of variability extends
beyond the initial noise samples. Because we operate
within a stochastic diffusion model, it is more accurate
to say we are searching over denoising trajectories rather
than simply exploring a noise space. This broader explo-
ration enables richer, data-consistent refinements during
inference while preserving the generative diversity of the
model.

3. Dataset and Model Training

We trained our models using the MNIST dataset.
This dataset consists of 60,000 images for training and
10,000 for testing, where each image represents a black
and white handwritten digit in a 28×28 pixel format. We
chose to focus on the MNIST dataset as it is simple, has
a large yet manageable size, and is popular.

To evaluate DDPM inference scalability with our
custom noise-scoring method at a small scale, we
trained a non-conditioned DDPM from scratch, draw-
ing inspiration from (this Github). During training,
MNIST images went through forward diffusion at ran-
dom timesteps. Specifically, Gaussian noise was added
using a fixed 1,000-timestep variance schedule. A sim-
ple UNet predicted the noise using MSE loss, optimized
with AdamW (initial learning rate 0.001 decayed by a
OneCycleLR scheduler over 100 epochs). We used a
batch size of 128 and computed EMA weights (decay
factor 0.995, updated every 10 steps) for stable inference
with the EMA model.

4. Methods
4.1. Guided Generation Techniques

Our approach exploits the known forward-diffusion
noise distributions of the training data by aggregating
these distributions for examples belonging to a specific
class of digit to construct an approximate ’class’ distri-
bution. This distribution serves as a reference for evalu-
ating candidate noise samples, allowing us to score noise
samples based on their likelihood of producing label-
consistent images through reverse diffusion. Unlike tra-
ditional guidance methods, our approach conditions the
model at test time by optimizing for denoising trajec-
tories consistent with a subset of trajectories from the
training distribution, rather than directly modifying the
model. To evaluate the effectiveness of this test-time
guidance approach, we conduct a proof-of-concept ex-
periment on MNIST, aiming to specialize an uncondi-
tioned DDPM to generate specific digits using only a
small set of labeled examples.

4.1.1 Mean Square Error (MSE) Based Approach

Since the mean of Gaussian-distributed random vari-
ables remains Gaussian, averaging the forward-diffused
versions of training images for a digit results in a uni-
modal Gaussian distribution centered at the ’expected
noised image’. This provides an approximation of the
class distribution at timestep t.

To compute this, we first take the mean of the clean
training images:

x̄0 =
1

N

N∑
i=1

x
(i)
0 ,

where x
(i)
0 denotes a training sample and N is the num-

ber of images used. Under the forward diffusion process,
this mean propagates to timestep t as:

µt =
√
ᾱt x̄0.

Instead of computing exact likelihoods, we score a par-
tially denoised sample xt based on its negative mean-
squared error relative to the expected noised image µt:

sMSE(xt) = −∥xt − µt∥2.

4.1.2 Mixture Based Approach

To account for the variability in the MNIST digits, in-
cluding differences in stroke thickness, curvature, and
shape, we constructed the mixture approach. This ap-
proach models each training sample as an individual
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Gaussian, preserving the multimodal nature of the dis-
tribution:

p(xt) =
1

N

N∑
i=1

N
(
xt |

√
ᾱtx

(i)
0 , (1− ᾱt)I

)
.

The log-likelihood gives the corresponding score for a
candidate sample:

sMixture(xt) = log

(
1

N

N∑
i=1

exp

(
−∥xt −

√
ᾱtx

(i)
0 ∥2

2(1− ᾱt)

))
.

Unlike the MSE-based approach, this model does
not allow for mode collapse. As a result, it allows for
more informative guidance signaling for reverse diffu-
sion. Thus, the score helps predict how well the candi-
date image aligns with the target distribution.

4.2. Search Algorithms

Each scoring method was tested with search algo-
rithms to explore the denoising trajectory space more
effectively than standard reverse diffusion and find opti-
mal noise candidates.

4.2.1 Top Half Search

Top Half Search iteratively prunes candidate noise sam-
ples during reverse diffusion, retaining only the most
promising ones. It begins with n noisy samples at
t = T − 1 and updates them at each step (t → t − 1)
using the model’s reverse diffusion function.

At predefined timestep checkpoints, candidates are
scored, with the top half retained and the rest discarded.
This process continues until t = 0, where the highest-
ranked candidate is selected as the final image. By
progressively filtering lower-scoring samples, Top Half
Search focuses computation on the most promising can-
didates.

In this study, the Top Half Search method was evalu-
ated using 128 initial candidates, which were progres-
sively pruned at specific timestep checkpoints: [100,
200, 300, 400, 500, 700, 900]. We tested this method
across different verifier data sizes, where each size rep-
resents the number of training examples used to con-
struct each class distribution. The verifier data sizes
tested were [50, 100, 200, 600, 1000, 1400, 1800].

4.2.2 Search Over Paths

Unlike the greedy Top Half method, the Search Over
Paths algorithm takes an exploratory approach by evalu-
ating multiple denoising trajectories. It starts with n ini-
tial noise samples which undergo reverse diffusion for

∆b steps before being scored and pruned. After denois-
ing for ∆b steps, the n candidates are duplicated n times
(yielding n2 candidates).

These n2 candidates are re-noised for ∆f steps, re-
injecting noise. These n2 are then denoised for ∆b

steps again before they are pruned back to the top n
candidates in accordance with the noise sample scores.
This cycle—reverse diffusing for ∆b steps, duplicat-
ing candidates, re-noising for ∆f steps, reverse diffus-
ing again for ∆b steps, and pruning back to n candi-
dates—continues until t = 0, where the highest-scoring
candidate is selected. By broadening the search space,
this method can compare and explore denoising path-
ways compared to a strictly greedy approach.

In this study, Search Over Paths used 5 initial candi-
dates, with a forward step size ∆f of 100 and a back-
ward step size ∆b of 200. Verifier data sizes tested were
[50, 100, 200, 600, 1000, 1400, 1800].

4.3. Experimentation

4.3.1 Baseline

We establish a baseline for our unconditioned model by
generating 500 images through 1000 steps of reverse
diffusion. A pretrained HuggingFace MNIST classifier
then categorizes these images (which has a 99.2% accu-
racy), providing class frequencies without test-time con-
ditioning.

4.3.2 Methodology

This experiment explored whether a non-label-
conditioned diffusion model could be guided toward
class-specific generation at test time despite the small
amount of labeled training examples. Instead of using
class-conditioning during training, we tested whether
a model could achieve significant specialization with
only a small fraction of labeled examples, far fewer
than MNIST’s 60,000. Success in this approach could
benefit domains like biology or robotics, where labeled
data is limited.

In each experiment, we generated 50 samples target-
ing a specific digit, varying the size of the verifier dataset
(the subset of labeled training data used to compute
noise scoring metrics). We then evaluated classification
accuracy, defined as the proportion of generated sam-
ples correctly matching the intended digit, across differ-
ent combinations of noise scoring and denoising trajec-
tory space search methods. Classification accuracy tells
us whether a pretrained classifier is able to qualitatively
recognize the generated digits based on their structural
quality.
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We also analyzed the Frechet Inception Distance
(FID) to quantitatively compare the feature embeddings
of generated images with those of real MNIST images.
The FID was computed by training our own CNN clas-
sifier on MNIST using a simple architecture—with three
convolutional layers, ReLU activations, pooling, and
dropout. We removed the final linear layer to extract
penultimate feature embeddings from 500 images from
the MNIST test set and 500 generated images (accumu-
lated across all digits for a given verifier data size) for
the FID calculation. The FID is defined as

∥µr − µg∥2 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1
2

)
where µr and µg are the mean feature vectors and Σr

and Σg are the covariance matrices of the embeddings
of real and generated images. A lower score indicates
closer similarity and better image generation. By ana-
lyzing classification accuracy and FID scores over vary-
ing verifier dataset sizes, we aimed to determine the min-
imum amount of labeled data required to effectively con-
dition the model at test time.

5. Results and Discussion
5.1. Baseline

In Figure 1, the baseline classification accuracy is
approximately 10%, as expected. Since the non-label-
conditioned diffusion model lacks guidance, it generates
images without targeting a specific digit class, result-
ing in roughly uniformly distributed outputs across the
classes.

Figure 1: Histogram of Baseline Results

5.2. Comparison Between Generation Tech-
niques for Search Over Paths

As shown in Figure 2 and Figure 3, classification ac-
curacy and FID scores are fairly consistent with respect
to the verifier size. Both MSE and Mixture guided gen-
eration achieve accuracies of 0.71–0.77 and FID scores

of 12-15 for MSE and 11-16 for Mixture, respectively.
Both methods reach above 70% accuracy (far better
than the around 10% baseline) by leveraging search over
paths with our custom verifier guidance.

We observed that the verifier size (number of labeled
training examples) does not affect performance greatly,
as both accuracy and FID scores remain constant across
verifier sizes. This may be because the distribution used
by our custom verifiers may converge in as few as 50
samples due to the simplicity and low-dimensionality
of the MNIST dataset. Theoretically, this makes sense
since the MSE and Mixture based scoring functions
should level out and show only minor improvements
once additional samples do not change the verifier dis-
tribution significantly.

(a) MSE Approach (b) Mixture Based Approach

Figure 2: FID Scores Across Different Verifier Sizes for
Search Over Paths

Figure 3: Comparison of MSE and Mixture Approaches
Across Different Verifier Sizes for Search Over Paths

From Figure 3, we can see that classification accuracy
and FID scores do not differ much in the MSE approach
vs. Mixture approach. This may be because both ap-
proaches converge to similar high-density regions of the
target distribution due to MNIST’s low complexity and
the robust nature of the reverse diffusion process. Thus
classification accuracy and FID scores between MSE
and Mixture is similar.

Figure 4 shows that digits like ”2” and ”5” are chal-
lenging to generate for both models. Specifically, many
samples generated with the intended label of ”5” are
classifier by our classifier as ”1” or ”6,” and with the
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(a) MSE Approach (b) Mixture Based Approach

Figure 4: Confusion Matrices for Search Over Paths
(Verifier Size 100)

mixture-based approach, many intended ”4s” are pre-
dicted as ”9s.” This occurs because the diffusion pro-
cess smooths images by removing fine details, some-
times making them resemble simpler digits like ”1.” Ad-
ditionally, the mixture-based approach may blend simi-
lar modes, resulting in guidance signals that transform
generated ”4s” into ”9s.”

5.3. Comparison Between Generation Tech-
niques for Top Half Search

From Figure 5 and Figure 6 we can see that the range
of accuracy for MSE was 0.75-0.80 and Mixture was
0.79-0.85. Additionally, we saw that the range of FID
scores for MSE was 8-10 and for Mixture was 10-12.5.
Therefore, for similar reasons, such as smoothness in the
reverse diffusion process and simplicity of the MNIST
dataset, we saw similar accuracy and FID scores across
different verifier sizes.

(a) MSE Approach (b) Mixture Based Approach

Figure 5: FID Scores Across Different Verifier Sizes for
Top Half

From Figures 5 and 6, we see that MSE produces
lower FID scores than the Mixture approach, suggesting
that its images are statistically closer to overall MNIST
distribution than the others. This may happen because
the MSE pulls the generated images towards the mean
of the training examples thus ensuring that there is a

good match with global statistics. However, from Fig-
ure 7, we see that the Mixture approach outperforms
the other in terms of classification accuracy. We think
this improvement is achieved because, although the mix-
ture method leads to a slightly higher FID, it preserves
more of the selective/important details specific of each
digit for accurate semantic recognition. In conclusion,
although MSE gives a better quantitative fit to the over-
all distribution, the mixture approach improves recog-
nizability by preserving important nuances.

As shown by Figures 3 and 6, the Top Half method
outperforms the search-over-paths approach in terms of
classification accuracy and FID scores. However, these
results are not comparable as we do not know how each
approach scales with compute, at least for stochastic dif-
fusion models like our DDPM.

Figure 6: Comparison of MSE and Mixture Approaches
Across Different Verifier Sizes for Top Half

(a) MSE Approach (b) Mixture Based Approach

Figure 7: Confusion Matrices for Top Half (Verifier Size
100)

6. Conclusion and Future Work
Our results show that incorporating additional guid-

ance through generation and sampling techniques sig-
nificantly improves classification accuracy to over 70%,
with FID scores ranging from 11 to 16— a substan-
tial improvement over the 10% baseline. Interestingly,
classification accuracy and FID scores remained largely
unchanged across different verifier sizes. Among the
methods tested, the MSE approach achieved lower FID
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scores, indicating a closer statistical match to MNIST,
while the Mixture approach enhanced recognizability,
leading to slightly higher classification accuracy.

Moving forward, we aim to collect more data to
strengthen the robustness of our claims, as computa-
tional constraints limited the number of generated im-
ages. While Top Half search outperformed Search Over
Paths in our experiments, we hypothesize that Search
Over Paths will scale better for DDPMs, similar to its
behavior in ODE solvers as observed in the DeepMind
paper. Generating more images will also improve the
reliability of our FID measurements. Additionally, we
plan to benchmark our method’s compute-scaling ef-
ficiency by investigating Neural Function Evaluations
(NFEs) and FLOPs.

Given our method’s ability to guide model outputs
effectively, we seek to extend our approach to larger
datasets such as CIFAR-10 and ImageNet. Expanding
our evaluation metrics to include inception score and
precision-recall will provide deeper insights into image
quality and diversity. We also aim to refine verifier ap-
proaches by integrating localized distributions (pixel-
level) with our current global approach (full-image anal-
ysis).

Beyond image generation, our method of leverag-
ing forward distributions from a small subset of la-
beled examples holds promise for domains with rela-
tively large amounts of unlabeled data. This is espe-
cially true when there isn’t enough labeled data to train
a label-conditioned model from scratch. A particularly
compelling application lies in robotics, where scaling
inference compute for diffusion policies could improve
motion planning accuracy and adaptability.

We will also do more theory work, analytically de-
termining the size of noise space vs denoising trajec-
tory space and verifying that inference search algorithms
are able to adequately direct denoising trajectories in the
larger denoising trajectory space.
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